CSE 451: Operating Systems
Winter 2026

Module 4
Processes

Gary Kimura

"y

w How many processes this Windows 11 system .

less than 10 0%

between 10 and 100

between 101 and 200

between 201 and 500

'y

"y

w How many threads on this Windows 11 system .

less than 100 0%

101 to 1,000

1,000 to 10,000

'y

"y

w How many handles on this Windows 11 system .

less than 1,000

1,000 to 10,000

10,001 to 100,000

'y

Process management

« This module begins a series of topics on processes,
threads, and synchronization

— this is the most important part of the class

* In this module: processes and process management
— What is a “process”?
— What's the OS’s process namespace?
— How are processes represented inside the OS?
— What are the executing states of a process?
— How are processes created?
— How can this be made faster?
— Shells
— Signals

What is a “process™?

* The process is the OS’s abstraction for execution
— A process is a program in execution

« Simplest (classic) case: a sequential process
— An address space (an abstraction of memory)
— A single thread of execution (an abstraction of the CPU)

« A sequential process is:

— The unit of execution thread

— The unit of scheduling

— The dynamic (active) execution context \
 vs. the program — static, just a bunch of bytes

address space

What's “Iin” a process?

* A process consists of (at least):

— An address space, containing

 the code (instructions) for the running program

 the data for the running program (static data, heap data, stack)
— (At least one) CPU state, consisting of

« The instruction pointer (EIP), indicating the next instruction

» The stack pointer (ESP)

« Other general purpose register values
— A set of OS resources

» open files, network connections, sound channels, ...

* In other words, it's all the stuff you need to run the
program
— or to re-start it, if it’s interrupted at some point

A process’s address space (idealized)

Ox7FFFFFFF
stack
2 (dynamic allocated mem)
I “~—ESP
T
address space TEELS

(dynamic allocated mem)

static data
(data segment)

! code — EIP
0x00000000 (text segment)

The OS’s process namespace

(Like most things, the particulars depend on the
specific OS, but the principles are general)

The name for a process is called a process ID (PID)
— An integer

The PID namespace is global to the system

— Only one process at a time has a particular PID
Operations that create processes return a PID

— E.g., fork()

Operations on processes take PIDs as an argument
— E.g., kill(), wait(), nice()

A word about Handles

 Never expose a kernel address to the user, unless
you want trouble...

» Instead use what we often refer to as a Handle to
iIndicate a kernel object. Which can be as simple as
an assigned number, some are pretty standard (e.g.,
stdin, stdout, and stderr are 0, 1, 2), or it might be
any seemly arbitrary number.

« A PID is a handle.

* In the kernel a handle table binds each handle to its
corresponding kernel data structure.

1/16/2026 10

User Kernel

. Handle PCB
or \ Table
21| 7
File
“2” R File
2 Descriptor

Later we'll see how the OS
manages of all these objects

1/16/2026 11

Representation of processes by the OS

 The OS maintains a data structure to keep track of a
process’s state

— Called the process control block (PCB/KPROCESS/proc) or
process descriptor

— Identified by the PID

« OS keeps all of a process’s execution state in (or linked
from) the proc when the process isn’t running
— EIP, ESP, registers, etc.

— when a process is unscheduled, the execution state is
transferred out of the hardware registers into the proc

— (when a process is running, its state is spread between the proc
and the CPU)

 Note: It's natural to think that there must be some
esoteric techniques being used
— fancy data structures that you’d never think of yourself

Wrong! It’s pretty much just what you’d think of! 12

The proc
aka Process Control Block (PCB)

« The proc is a data structure with many, many fields:
— process ID (pid)
— pointer to parent proc
— execution state
— Instruction pointer, stack pointer, registers
— address space info
— pointers for state queues

* In Linux:
— defined in task_struct (include/linux/sched.h)
— over 95 fields!!!

procs and CPU state

 When a process is running, its CPU state is inside the
CPU
— EIP, ESP, registers
— CPU contains current values

 When the OS gets control because of a ...

— Trap: Program executes a syscall

— Exception: Program does something unexpected (e.g., page
fault)

— Interrupt: A hardware device requests service

the OS saves the CPU state of the running process in
that process’s proc

14

When the OS returns the process to the running state, it
loads the hardware registers with values from that
process’'s PCB — general purpose registers, stack
pointer, instruction pointer

The act of switching the CPU from one process to
another is called a context switch

— systems may do 100s or 1000s of switches/sec.

— takes a few microseconds on today’s hardware

Choosing which process to run next is called scheduling

There is a performance tradeoff between how often to
context switch

15

The OS kernel is not a process

« It's just a block of code!

* (In a microkernel OS, many things that you normally
think of as the operating system execute as user-
mode processes. But the OS kernel is just a block of
code.)

« Remember: the CPU is always executing code in the
context of a process. That code may be in user mode
(restricted access to hardware) or kernel mode (free-
for-all).

16

Process execution states

« Each process has an execution state, which indicates
what it's currently doing

— ready: waiting to be assigned to a CPU
 could run, but another process has the CPU

— running: executing on a CPU
* it's the process that currently controls the CPU

— waiting (aka “blocked”): waiting for an event, e.g., I/O
completion, or a message from (or the completion of)
another process

« cannot make progress until the event happens

* As a process executes, it moves from state to state
— UNIX: run ps, STAT column shows current state

— which state is a process in most of the time?

17

Process states and state transitions

terminate

>

(unschedule)

create trap or exception

(I/O, page fault,

18

State queues

 The OS maintains a collection of queues that
represent the state of all processes in the system
— typically one queue for each state
* e.g., ready, waiting, ...

— each proc is queued onto a state queue according to the
current state of the process it represents

— as a process changes state, its proc is unlinked from one
gueue, and linked onto another
« Once again, this is just as straightforward as it
sounds! The proc are moved between queues, which
are represented as linked lists. There is no magic!

19

State queues

Ready queue header

head ptr

These are procs!

iy

»

tail ptr

firefox (1365)

—

Wait queue header

head ptr

»

tail ptr

cat (1468)

—

emacs (948)

——>

™~

e

e

/

L
flrefox (1207)

Is (1470)

« There may be many wait queues, one for each type
of wait (particular device, timer, message, ..

)

20

1/16/2026

21

procs and state queues

procs are data structures
— dynamically allocated inside OS memory

When a process is created:
— OS allocates a proc for it
— OS initializes proc
— (OS does other things not related to the proc)
— OS puts proc on the correct queue

As a process computes:
— OS moves its proc from queue to queue

When a process is terminated:
— proc may be retained for a while (to receive signals, etc.)
— eventually, OS deallocates the proc

22

Process creation

 New processes are created by existing processes
— creator is called the parent

— created process is called the child
* UNIX: do ps, look for PPID field

— what creates the first process, and when?

23

P .

il
4

8
é.

‘eeee

o) 0 ¢

24

Process creation semantics

* (Depending on the OS) child processes inherit certain
attributes of the parent
— Examples:

* Openfile table: implies stdin/stdout/stderr

« On some systems, resource allocation to parent may be divided
among children

* (In Unix) when a child is created, the parent may
either wait for the child to finish, or continue in
parallel

* (In Unix) These are policies implemented by the
kernel. In Windows, inheritance is done explicitly in
user mode by the CreateProcess library routine (it's
not a system call!)

25

A Brief diversion

A Simple or Complex API set?

» Ethos regarding designing of OS calls
— Advantage of Simple

— Advantage of Complex

« Original Unix APl was Simple and has evolved driven
by observed usage patterns, e.g., Fork() and Exec()

 Windows API started out more Complex and ...

* For pedagogical reasons we spend time learning the
iIns-and-outs of the Simple API set. When you get
out in the real world it's more complex.

1/16/2026 26

UNIX process creation details

 UNIX process creation through fork () system call

— creates and initializes a new proc

* initializes kernel resources of new process with resources of
parent (e.g., open files)

« initializes EIP, ESP to be same as parent
— creates a new address space

* initializes new address space with a copy of the entire contents
of the address space of the parent

— places new proc on the ready queue
* the fork () system call “returns twice”

— once into the parent, and once into the child
 returns the child’s PID to the parent
 returns 0 to the child

« fork () = “clone me”

27

/

Parent
proc

/

Parent
address space

(code, static
data, heap,
stack)

28

/

Parent

proc

/

similar, but differ[e}
in key ways

>

Parent
address space

(code, static dentical

copy
data, heap, (with sole
stack) exception

of PID
argument
on the top

of the

stack)

Child
proc

Child address
space

(code, static
data, heap,
stack)

29

testparent — use of fork()

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{

char *name = argv[O0];

int pid = fork():

if (pid == 0) {

printf (“Child of %s is %d\n”, name, pid);

return 0O;

} else {
printf (“My child is %d\n”, pid);
return O;

30

testparent output

spinlock®% gcc -o testparent testparent.c
spinlock% ./testparent

My child is 486

Child of testparent is 0

spinlock% ./testparent

Child of testparent is 0

My child is 571

31

exec() vs. fork()

 Q: So how do we start a new program, instead of
just forking the old program??

 A: First fork, then exec
— int exec(char * prog, char * argv([])

e exec ()

— stops the current process

— loads program ‘prog’ into the address space
* i.e., over-writes the existing process image

— initializes hardware context, args for new program
— places proc onto ready queue
— note: does not create a new process!

32

* S0, to run a new program:
— fork()
— Child process does an exec()
— Parent either waits for the child to complete, or not

33

/

Parent

proc

/

similar, but differ[e}
in key ways

>

Parent
address space

(code, static dentical

copy
data, heap, (with sole
stack) exception

of PID
argument
on the top

of the

stack)

Child
proc

Child address
space

(code, static
data, heap,
stack)

34

/

Parent
proc

/

Child
proc

Parent
address space

(code, static
data, heap,
stack)

35

Making process creation faster

« The semantics of fork() say the child’s address space
IS a copy of the parent’s

» Implementing fork() that way is slow

— Have to allocate physical memory for the new address space
and reserve swap space

— Have to set up child’s page tables to map new address
space

— Have to copy parent’s address space contents into child’s
address space
« Which you are likely to immediately throw away with an exec()!

36

Method 1: vfork()

 vfork() is the older (now uncommon) of the two
approaches we’ll discuss

» Instead of “child’s address space is a copy of the
parent’s,” the semantics are “child’s address space is
the parent’s”

— With a “promise” that the child won’t modify the address space
before doing an execve()

« Unenforced! You use vfork() at your own peril

— When execve() is called, a new address space is created and
it's loaded with the new executable

— Parent is blocked until execve() is executed by child

— Saves wasted effort of duplicating parent’s address space,
just to throw it away

37

Parent
proc

[

similar, but differ

in key ways

Parent

address space

(code, static
data, heap,

stack)

Child
proc

Vfork()

38

Parent similar, but differ[e} Child
proc in key ways proc

/

/
/%ha issues if multi-threading is the

goal

 Two Instruction and Stack Pointers

Parent « Two handles tables, ouch...
address space « Two page tables, my head is starting to
(code, static hurt
data, heap,
stack) » Key question? Isolation vs. Shared
« COW mimics isolation if that is our
goal
Vfork()

39

Parent
proc

similar, but diﬁer[e} Child
in key ways proc

/

/
/ /OW to mimic isolation

Make everything shared but READONLY

* When one modifies a shared part a private
copy if made and the COW is broken

Parent + Use reference counts to keep track of this
address space « Granularity is open to design and
(code, static discussion (The entire address space, a
data, heap, single word, a page...)
stack)

» Akin to a fork() that doesn’t do the copy
until one process modifies the shared

memory Vfork()

40

Method 2: copy-on-write

» Retains the original semantics, but copies “only what
IS necessary” rather than the entire address space

* On fork():

Create a new address space

Initialize page tables with same mappings as the parent’s
(i.e., they both point to the same physical memory)

* No copying of address space contents have occurred at this
point — with the sole exception of the top page of the stack

Set both parent and child page tables to make all pages
read-only

If either parent or child writes to memory, an exception
occurs

When exception occurs, OS copies the page, adjusts page
tables, etc.

41

UNIX shells

int main(int argc, char **argv)
{
while (1) {
printf (“$ “);
char *cmd = get next command() ;
int pid = fork();
if (pid == 0) {
exec (cmd) ;
panic(“exec failed!”);
} else {
wait (pid) ;

42

Truth in advertising ...

In Linux today, clone is replacing fork (and vfork)
— clone has additional capabilities/options

But you need to clearly understand fork as described
here

In Linux today, exec is not a system call; execve is
the only “exec-like” system call

— execve knows whether you have done a fork or a vfork by a
flag in the PCB

But you need to clearly understand exec as
described here

43

Input/output redirection

« 3 ./myprog <input.txt > output.txt # UNIX
— each process has an open file table

— by (universal) convention:
* 0O: stdin
» 1: stdout
« 2: stderr

« A child process inherits the parent’s open file table

« Redirection: the shell ...
— copies its current stdin/stdout open file entries
— opens input.txt as stdin and output.txt as stdout
— fork ...
— restore original stdin/stdout

44

Old-school Inter-process communication
via signals

Processes can register event handlers
— Feels a lot like event handlers in Java, which ..
— Feel sort of like catch blocks in Java programs

When the event occurs, process jumps to event
handler routine

Used to catch exceptions
Also used for inter-process (process-to-process)

communication

— A process can trigger an event in another process using
signal

— Note that a signal is one bit; you can pass way more
information using other signals... but why?

45

Signals

Action Comment

SIGHUP

SIGINT

SIGQUIT
SIGILL

SIGABRT
SIGFPE

SIGKILL
SIGSEGV
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGUSRZ2
SIGCHLD
SIGCONT
SIGSTOP
SIGTSTP
SIGTTIN
SIGTTOU

O O bW N

9

11

13

14

15
30,10,16
31,12,17
20,17,18
19,18,25
17,19,23
18,20, 24
21,21,26
22,22,27

Term
Core
Core
Core
Core
Term
Core
Term
Term
Term
Term
Term
Ign

Stop
Stop
Stop
Stop

Hangup detected on controlling terminal
or death of controlling process

Interrupt from keyboard

Quit from keyboard

Tllegal Instruction

Abort signal from abort (3)

Floating point exception

Kill signal

Invalid memory reference

Broken pipe: write to pipe with no read

Timer signal from alarm(2)

Termination signal

User-defined signal 1

User-defined signal 2

Child stopped or terminated

Continue 1f stopped

Stop process

Stop typed at tty

tty input for background process

tty output for background process

46

Example use

You're implementing Apache, a web server

Apache reads a configuration file when it is launched

— Controls things like what the root directory of the web files
is, what permissions there are on pieces of it, etc.

Suppose you want to change the configuration while
Apache is running

— If you restart the currently running Apache, you drop some
unknown number of user connections

Solution: send the running Apache process a signal

— It has registered a . signal handler that gracefully re-reads
the configuration file

47

